Modulatory synaptic actions of an identified histaminergic neuron on the serotonergic metacerebral cell of Aplysia.

نویسندگان

  • K R Weiss
  • E Shapiro
  • I Kupfermann
چکیده

Possible sources of excitatory synaptic input to the serotonergic metacerebral cell (MCC) were determined by stimulating various neurons in the cerebral ganglion. Firing of the previously identified histaminergic neuron C2 was found to produce synaptic input to the MCC. The synaptic input consists of fast excitatory-inhibitory synaptic potentials on a background of a slow EPSP. The slow EPSP appears to be monosynaptic and chemically mediated since it persists in a solution of high divalent cations; broadening of the presynaptic spike enhances the EPSP; the size of the EPSP is a function of the Mg2+ and Ca2+ concentrations of the bathing solution; and the EPSP can be mimicked by application of histamine to the MCC. The slow EPSP, in addition to firing the MCC, can increase the excitability of the cell, even under conditions in which C2 is fired at a rate too slow to produce a measurable EPSP when the MCC is at rest potential. This property appears to be due to the fact that the slow EPSP results from an apparent decrease of membrane conductance so that the size of the EPSP increases markedly as the cell is depolarized, and the EPSP appears to be highly voltage-dependent so that it is small or absent close to the rest potential of the MCC. When the MCC is voltage-clamped, application of histamine to the bath results in an inward current that disappears when the MCC is hyperpolarized. The potential at which the histamine-induced current reverses or disappears is dependent on the concentration of external potassium, suggesting that, at least in part, the slow EPSP is due to a decrease of potassium conductance. The data on C2 are consistent with its being an element of the neuronal system that mediates a state of food arousal in Aplysia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An identified histaminergic neuron modulates feeding motor circuitry in Aplysia.

An identified histaminergic neuron, C2, in the marine mollusk Aplysia is a complex mechanoafferent which appears to contribute to the maintenance of food arousal by means of its synaptic connections to the metacerebral cell (MCC). Because C2 also has extensive synaptic outputs to neurons other than the MCC, we studied its possible motor functions. We identified several synaptic followers of C2 ...

متن کامل

Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP.

The neural changes accompanying sensitization of the gill-withdrawal reflex in Aplysia are associated with presynaptic facilitation at monosynaptic connections between sensory neurons and motor cells. To analyze the molecular mechanisms underlying the facilitation, the pharmacological actions of serotonin, octopamine, and dopamine were examined. Only serotonin enhanced synaptic transmission bet...

متن کامل

The role of a modulatory neuron in feeding and satiation in Aplysia: effects of lesioning of the serotonergic metacerebral cells.

Food-induced arousal in Aplysia is characterized by a progressive increase in the speed and strength of biting responses elicited by a seaweed stimulus. Data from semi-intact and dissected preparations suggest that the identified, serotonergic, metacerebral cells (MCCs) of the cerebral ganglion contribute to food-induced arousal by enhancing the strength of buccal muscle contractions, and by mo...

متن کامل

Synaptic actions of identified peptidergic neuron R15 in Aplysia. I. Activation of respiratory pumping.

The purpose of the study described in this and the following two companion papers was to determine the synaptic actions of neuron R15, an endogenously bursting neurosecretory cell in Aplysia, as a step toward determining its physiological function. The results described in this paper demonstrate that activity in R15 increases the frequency of bursting in the R25/L25 network that triggers respir...

متن کامل

Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation.

Release of arachidonic acid from membrane phospholipids is receptor-mediated and might generate second messengers in neurons. We tested this idea using the simple nervous system of the marine mollusk, Aplysia californica. Aplysia neural components metabolize arachidonic acid through lipoxygenase and cyclo-oxygenase pathways. We identified 2 major lipoxygenase products, 12- and 5-hydroxyeicosate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 1986